МИНИСТЕРСТВО ОБРАЗОВАНИЯ НОВОСИБИРСКОЙ ОБЛАСТИ ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ МЭРИИ ГОРОДА НОВОСИБИРСКА

муниципальное автономное общеобразовательное учреждение города Новосибирска «Образовательный центр — гимназия № 6 «Горностай»

Принято Решением педагогического совета Утверждаю Директор

Протокол № 1 от 29.08.2023

Приказ № 85 от 29.08.2023

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА по формированию информационных компетенций «Программирование для биохима»

Направленность: Техническая

Возраст обучающихся:

14 – 16 лет

Автор:

Болотина Татьяна Александровна педагог дополнительного образования

Новосибирск – 2023

1.1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа «Программирование для биохима», реализуемая в рамках деятельности центра цифрового образования детей «ІТ-куб» ОЦ «Горностай», позволяет углубить и расширить общеинтеллектуальное и техническое развитие ребенка в биохимическом направлении.

Программа разработана в соответствии с требованиями нормативных документов:

- ФЗ РФ от 29.12.2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- Указ Президента РФ от 7.05.2012 г. № 599 «О мерах по реализации государственной политики в области образования и науки»;
- Концепция развития дополнительного образования детей, утверждена распоряжением Правительства РФ от 4 сентября 2014 г. № 1726-р;
- —Приказ Министерства просвещения Российской Федерации от 09.11.2018 № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- —Санитарные правила СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи», Постановление Главного государственного санитарного врача РФ от 28.09.2020 года № 28 (Минюст РФ 18.12.2020 регистрационный №61573) действующие до 01.01.2027г.;
- Методические рекомендации по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы) (разработанные Минобрнауки России совместно с ГАОУ ВО «Московский государственный педагогический университет», ФГАУ «Федеральный институт развития образования», АНО ДПО «Открытое образование», 2015г.) (Письмо Министерства образования и науки РФ от 18.11.2015 № 09-3242);
- Методические рекомендации по реализации адаптированных дополнительных общеобразовательных программ, способствующих социально-психологической реабилитации, профессиональному самоопределению детей с ограниченными возможностями здоровья, включая детей-инвалидов, с учетом их особых образовательных потребностей. (Письмо Министерства образования и науки РФ № ВК-641/09 от 26.03.2016);
- Паспорт национального проекта «Образование» (утв. президиумом Совета при Президенте РФ по стратегическому развитию и национальным проектам, протокол от 24.12.2018 № 16);
- Методические рекомендации по созданию и функционированию центров цифрового образования «ІТ-куб» (утв. распоряжением Министерства просвещения Российской Федерации от 10.11.2021 № ТВ-1984/04).

Содержание программы направлено на развитие интеллектуальных способностей, математического, информационного и научного мышления.

Уровень общеобразовательной программы: углубленный.

Направленность программы: техническая.

Актуальность программы

В последние годы информационные технологии активно проникают во все сферы современной жизни – техническую, научную, образовательную.

Не остались в стороне и такие науки, как химия и биология. Они активно используют возможности современного программирования. Например, в биологии программирование

позволяет понять, как устроена биоинженерная машина внутри наших клеток, какие функции выполняет каждый отдельно взятый ген, какие гены ответственны за наши болезни, как вирусы и бактерии влияют на нас на молекулярном уровне, как создать новый фармацевтический препарат и множество других вопросов.

Это требует обновления подходов к обучению. Для того, чтобы обеспечить высокий уровень подготовки учащихся специализированных классов, отвечающий современным требованиям, необходимо не только углубленное изучение самого предмета, но и овладение техническими средствами научного анализа данных.

Использование языка программирования Python позволяет решать биохимические задачи учебного характера. Этот высокоуровневый язык достаточно прост для освоения и хорошо показал себя в разработке, в тестировании, в анализе данных, в моделировании, в науке. Широкое распространение он получил не только, благодаря своей простоте и лаконичности, но и в силу своей модульности, возможности интегрироваться с другими языками программирования и наличия большого количества пакетов для анализа больших данных и научных расчетов.

Данный курс позволит старшеклассникам применять приемы программирования для решения специализированных задач в рамках биохимического направления.

Отличительные особенности и новизна программы

Основной отличительной особенностью программы является ее интегральный характер, объединяющий знания по биологии, химии, математике и программированию. Данный курс основан на решении практических задач олимпиадного уровня по биологии и химии средствами программирования.

Занятия проходят с обязательным практическим закреплением материала в ходе выполнения учебных заданий.

В процессе обучения отрабатываются и закрепляются знания языка программирования Python. Выполнение практических заданий повышает возможность участия в предметных олимпиадах и способствует как повышению интереса к изучению данного курса, так интереса к научным методам познания.

Адресат программы

Программа ориентирована на обучающихся специализированных классов биохимического направления, в возрасте 14 - 16 лет, знакомых с языком программирования Python.

Объем и срок освоения программы Объём программы 30 часов.

Продолжительность – учебное полугодие.

Форма обучения: очная.

Режим занятий, периодичность и продолжительность занятий

Длительность и количество занятий — 1 раз в неделю по 2 академических часа (1 академический час равен 45 минутам). Общий объём 30 часов. Состав группы обучающихся — постоянный.

Количество обучающихся в одной группе: до 12 человек.

1.2 ЦЕЛИ И ЗАДАЧИ ПРОГРАММЫ

Углубление знаний учащихся в сфере использования информационных ресурсов современного программирования для решения биохимических задач.

Задачи курса:

Задачи программы: Предметные:

- дать представление о современных методах научного анализа с использованием программирования;
- научить применять основные структуры языка программирования Python для решения учебных задач;
 - закрепить навыки разработки алгоритмов и составления программ на языке Python;
 - развивать творческие способности при решении экспериментальных задач;
- способствовать формированию представлений о постановке, классификации, приёмах и методах решения олимпиадных задач.

Метапредметные:

- формирование умения ориентироваться в системе знаний в сфере КТ;
- развитие исследовательских умений.
- формирование умения выбирать наиболее эффективные способы решения задач в зависимости от конкретных условий;
 - формировать умение распределять время.

Личностные:

- способствовать развитию интереса к программированию как инструменту научного анализа.
 - воспитание настойчивости, инициативы, самостоятельности
 - формировать умение работать в команде, развивать коммуникативные навыки;
- формировать целеустремлённость в процессе учебной деятельности и творческой, исследовательской работы.
 - способствовать развитию интереса к химии и биологии, к решению олимпиадных задач.

1.3 СОДЕРЖАНИЕ ПРОГРАММЫ

Учебный план

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Период обучения учебное полугодие, 1 раз в неделю по 2 часа.

$\mathcal{N}_{\mathbf{Q}}$	Тема занятия	Содержание	
1	Повторение. Условные операторы.	Проверка знаний по теме «Условный оператор if». Разбор примеров. Отработка навыков решения задач различного уровня сложности.	2
2	Повторение. Строки. Математические операции. Случайные числа.	Проверка знаний по теме «Строки. Математические операции. Случайные числа». Различные способы задания строк, основные функции по работе со строками. Отработка навыков решения задач различного уровня сложности.	2
3	Повторение. Циклы.	Проверка знаний по теме «Циклы.» Формат оператора цикла с предусловием while, операторы цикла с параметром for, циклические алгоритмы. Разбор примеров, решение задач Отработка навыков решения задач различного уровня сложности.	2

4	Повторение. Кортежи,	создание кортежа, основные функции по	2
	списки, словари.	работе с кортежами	
		создание списка, различные способы	
		задания списка, вывод элементов списка	
		на экран, основные функции по работе	
		со списками в языке программирования	
		Python. Выполнение практического	
		задания.	
		Работа со словарями. Решение задач.	
5	Решение олимпиадных	Разбор и решение олимпиадных задач	22
	задач прошлых лет.	биохимической направленности	
		методами программирования	
	Итого		30

1.4 ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Планируемые результаты освоения курса

Ученик будет знать

- современные методы научного анализа с использованием программирования;
- основные структуры языка программирования Python для решения учебных задач;

Ученик будет уметь:

- ориентироваться в системе знаний в сфере КТ;
- осуществлять исследования программными методами.
- выбирать наиболее эффективные способы решения задач в зависимости от конкретных условий;
 - распределять время.
 - разрабатывать алгоритмы и составлять программы на языке Python;
 - решать экспериментальные и олимпиадные задачи;

Ученик получит возможность развить:

- интерес к программированию как инструменту научного анализа.
- настойчивость, инициативу, самостоятельность
- умение работать в команде, коммуникативные навыки;
- целеустремлённость в процессе учебной деятельности и творческой, исследовательской работы.
 - интерес к химии и биологии, к решению олимпиадных задач.

2. КОМПЛЕКС ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИХ УСЛОВИЙ

2.1 КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК.

Программирование для биохима.

Период обучения – 5 месяцев, 1 раз в неделю по 2 часа. Всего 30 часов.

Период обучения учебное полугодие, 1 раз в неделю по 2 часа.

No	Тема занятия	Тип
• .=		занятия
1	Повторение. Условные операторы.	КЗ
2	Повторение. Строки. Математические операции. Случайные числа.	КЗ
3	Повторение. Циклы.	КЗ
4	Повторение. Кортежи, списки, словари.	КЗ
5	Решение олимпиадных задач прошлых лет.	КЗ

6	Решение олимпиадных задач прошлых лет.	КЗ
7	Решение олимпиадных задач прошлых лет.	КЗ
8	Решение олимпиадных задач прошлых лет.	КЗ
9	Решение олимпиадных задач прошлых лет.	КЗ
10	Решение олимпиадных задач прошлых лет.	КЗ
12	Решение олимпиадных задач прошлых лет.	КЗ
13	Решение олимпиадных задач прошлых лет.	КЗ
14	Решение олимпиадных задач прошлых лет.	КЗ
15	Решение олимпиадных задач прошлых лет.	КЗ

Календарный учебный график заполнен с помощью условных обозначений:

КЗ – комбинированные занятия, сочетающие элементы теории и практики;

П – практическая работа по выполнению творческих заданий;

ПР – работа над проектом.

2.2 УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

Материально-техническая база:

Учебное помещение:

Компьютерный класс, с выходом интернет; столы, стулья

Материально-техническое обеспечение программы:

персональные компьютеры (на каждого обучающегося) с программным обеспечением, с минимальными системными требованиями (процессор і3 или аналог, 4 Гб оперативной памяти) экран, проектор;

установленный на каждый компьютер интерпретатор языка программирования Python 3 с установленным IDEThonny.

Информационное обеспечение:

Пакет заданий - математических и биологических задач различного уровня сложности для решения н языке Python.

2.3 ФОРМЫ АТТЕСТАЦИИ

Формы оценки уровня достижений обучающихся

Для контроля и самоконтроля за эффективностью обучения применяются методы: наблюдение, опрос; решение задач.

текущий и итоговый контроль выполнения практических заданий;

Формы фиксации образовательных результатов

Для фиксации образовательных результатов в рамках курса используются: пакет промежуточных практических работ, выполненных обучающимися;

Формы подведения итогов реализации программы педагогическое наблюдение; педагогический анализ выполнения обучающимися учебных заданий; активность обучающихся на занятиях.

2.4 ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оценивание развития учащихся проводится на основе следующего перечня компетенций:

Технические:

Алгоритмическое, логическое и конструкторское мышление.

Гибкие: творческое мышление; работа в коллективе, эффективная коммуникация, умение аргументированно отстаивать свое решение.

Текущий контроль сформированности результатов освоения программы осуществляется с помощью нескольких инструментов на нескольких уровнях: на каждом занятии: опрос, выполнение заданий, самоконтроль ученика; на практикумах: выполнение поставленных задач, взаимоконтроль учеников, самоконтроль ученика; уровень и количество решенных заданий.

Показатели выполнения практических заданий:

Начальный уровень - обучающиеся решают практические задачи по образцу, следуя прямым указаниям педагога;

Базовый уровень — обучающиеся выполняют задания, внося изменения в образец, манипулируя изученным материалом, но обращаются за помощью к педагогу;

Продвинутый уровень - обучающиеся самостоятельно формируют алгоритм, применяя все ранее полученные знания.

Критерии оценивания выполнения практических заданий

Оцениваемый результат	Минимальный уровень	Средний уровень	Высокий уровень
Владение навыков алгоритмического мышления и понимание необходимости формального описания алгоритмов	Обучающиеся не способны определить подходящую алгоритмическую конструкцию для формального описания алгоритма решения практической задачи	Обучающиеся способны определить подходящую алгоритмическую конструкцию для формального описания алгоритма решения практической задачи при помощи преподавателя	Обучающиеся способны самостоятельно определить подходящую алгоритмическую конструкцию для формального описания алгоритма решения практической задачи
Навыки применения таких структур данных, как число, текст	Обучающиеся не способны определить разницу между указанными типами данных, смысл их использования при решении конкретных задач	Обучающиеся способны определять при помощи преподавателя типы данных, необходимых для реализации алгоритма решения задачи	Обучающиеся способны самостоятельно определять типы данных, необходимых для реализации алгоритма решения задачи
Навыки построения условных конструкций	Обучающиеся не способны описать, как работает ветвление, его предназначение. Обучающийся не может самостоятельно использовать условные конструкции для решения практической задачи.	Обучающиеся способны описать, как работает ветвление, его предназначение. Обучающийся может с помощью преподавателя использовать условные конструкции для решения практической задачи.	Обучающийся может самостоятельно использовать условные конструкции для решения практической задачи, определить работоспособную форму построения ветвления.
Навыки построения циклических конструкций	Обучающиеся не способны описать, как работает цикл, его предназначение. Обучающийся не может самостоятельно использовать циклические конструкции для	Обучающиеся способны описать, как работает цикл, его предназначение. Обучающийся может с помощью преподавателя использовать циклические конструкции для	Обучающийся может самостоятельно использовать циклические конструкции для решения практической задачи, определить работоспособную форму построения цикла.

	решения практической задачи.	решения практической задачи.	
Навыки отладки программы	Обучающийся не может самостоятельно применить пошаговую отладку, найти места ошибок в программном коде и внести корректные изменения.	Обучающийся может самостоятельно применить пошаговую отладку, найти места большинства ошибок в программном коде. С помощью преподавателя может внести корректные изменения в программный код.	Обучающийся может самостоятельно применить пошаговую отладку, найти места ошибок, внести корректные изменения в программный код.
Навыки коммуникации и презентации	Недостаточная уверенность, аргументация позиций	Уверенность во время выступления, хороший стиль речи, аргументированность и убедительность. Хорошая визуализация защиты	Уверенность во время выступления, отличный стиль речи, высокая убедительность и аргументированность. Качественная визуализация защиты

2.5 МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

В качестве методов обучения по программе используются словесный, наглядный, практический, проблемный, проектные методы.

В качестве методов воспитания по программе используются упражнение, убеждение, мотивация, поощрение.

На занятиях используются различные формы организации образовательного процесса:

Индивидуальная, групповая.

Формы организации учебного занятия: теоретическое, практическое занятие, эксперимент, презентация.

3. СПИСОК ЛИТЕРАТУРЫ

Для педагога:

- 1. Закон РФ «Об образовании».
- 2. Первин Ю. А. Методика раннего обучения информатике. / Первин Ю. А. —
- М.: БИНОМ. Лаборатория знаний, 2008. 228 с.
- 3. «Краткая история электроники» https://postnauka.ru/longreads/103187.
- 4. «Язык программирования Си» Б.Керниган и Д.Ритчи. Издательство: Вильямс, 2019 г. 288 с. 5. «Искусство схемотехники» Хоровиц Пол, Хилл Уинфилд. Издательство: Бином, 2020 г. 704 с.
 - 5. https://habr.com/ru/articles/690734/
- 6. Григорьев С.Г. Реализация дополнительной общеобразовательной программы по тематическому направлению «Программирование на языке Python» с использованием оборудования центра цифрового образования детей «ІТ- куб»: методическое пособие / С. Г. Григорьев, М. А. Родионов, И. В. Акимова. –М: Центр Естественно-научного и математического образования, 2021. –123с.
- 7. Поляков К.Ю. Программирование. Python. C++. В 4 ч.: учебное пособие/К.Ю.Пляков. М.:Бином. Лаборатория знаний, 2019.
- 8. Прохоренок Н. А., Дронов В.А. Python 3. Самое необходимое СПб: БХВ-Петербург, 2019.

- 9. Мэтиз Э. Изучаем Python. Программирование игр, визуализация данных, веб-приложения //Пер. с англ.: учебник/Э. Мэтиз. 2-е изд. Спб.: Питер. 2018.
 - 10. Лутц М. Руthon. Карманный справочник. 5-е изд.: Пер. с англ. //М.: ИД Вильямс. 2015.
- 11. Бизли Д.М., Г. Ван Россум. Язык программирования Python. Справочник. (пер. с англ.) Киев: ДиаСофт., 2000.
 - 12. Чаплыгин А. Н. Учимся программировать вместе с Питоном. Revision: 226.
- 13. Васильев Денис Алексеевич Методические особенности изучения языка Python школьниками // Символ науки. 2017. №1. URL: https://cyberleninka.ru/article/n/metodicheskie-osobennosti-izucheniya-yazyka-python-shkolnikami (дата обращения: 15.01.2019).
- 14. Бухаров Т. А., Нафикова А. Р., Мигранова Е. А. ОБЗОР ЯЗЫКА ПРОГРАММИРОВАНИЯ РҮТНО И ЕГО БИБЛИОТЕК // Colloquium-journal. 2019. №3-1 (27). URL: https://cyberleninka.ru/article/n/obzor-yazyka-programmirovaniya-python-i-ego-bibliotek (дата обращения: 15.01.2019).

Список литературы для обучающихся:

- 1. ПИТОНТЬЮТОР URL: https://pythontutor.ru (дата обращения: 15.01.2019).
- 2. Python: основы и применение // Stepik URL: https://stepik.org/course/512/ (дата обращения: 15.01.2019).
- 3. Python. Быстрый старт // GeekBrains: Обучающий IT-портал URL: https://geekbrains.ru/courses/105 (дата обращения: 15.01.2019)

Оценка проектов

При оценке проектов учитываются следующие критерии:

- а. соответствие проекта заданию (0-2 балла);
- b. творческий подход (0-3 баллов);
- с. сложность проекта (0-5 баллов);
- d. качество алгоритмов (0-10 баллов);
- е. отсутствие ошибок в проекте (0-5 баллов);
- f. качество презентации содержательность, логичность, креативность представления проекта (0-5 баллов).

№ п/п	соответстви е	творчески й	сложность	качество	отсутстви	качество
ФИО	работы	подход (0-3	проекта; (0-	алгоритм	е ошибок	презентац
	заданию	баллов)	5 баллов)	a	В	ии (0-5
	(0-2 баллов)			(0-10 баллов)	программе	баллов)
					(0-5 баллов)	
1.						
2.						
12.						